中新社70年|忆九八抗洪:伴着洪峰走,枕着长江睡******
编者按:
本期小牛工作室特邀参加1998年抗洪报道的中新社记者顾立军、田惠明,为大家回忆九八抗洪采访和应对“汛考”的难忘往事。
灾区欢迎三种人
24年前,1998年8月,沿江诸省,阴云密布,连月不开,暴雨如注,十日不停,恨不得将20世纪最后两年的雨水一下子倾吐出来。
四川的嘉陵江、岷江、乌江、沱江,湖南的湘江、资江、沅江、澧水,湖北的汉江,江西的赣江,呼啸着涌入长江,长江水位持续暴涨,洞庭湖满了,鄱阳湖溢了。滚滚江水,浩浩荡荡。
一时间,抗洪救灾成为举国上下的头等大事。
关键时刻显真情:身着绿衣的解放军官兵冲上了江堤,扛沙袋、堵管涌;穿白衣的医生护士赶到了灾区,医病患,救伤者;媒体记者闻风而动,穿梭在长江两岸,拍灾情,录实况,将军民团结抗洪救灾的新闻及时传至海内外。他们是灾区最受欢迎的三种人。

中新社的记者不用扬鞭自奋蹄。
此时,时任湖北分社社长章敦华正全力以赴,疾走长江两岸。武汉支社长柳俊武镇守三镇,三峡支社长罗德惠负责宜昌,江西分社长段八一出征九江,总社摄影部多位记者急赴鄂、赣两省灾区,大家合力同心,及时将长江抗洪新闻采写发出。
眼看着洪灾越来越严重,总社又派出了一支抗洪采访小分队,于8月13日中午,乘白色桑塔纳、蓝色吉普车,驶出总社大门,向着长江抗洪前线出发了。

报道组成员有:时任社长助理顾立军为总负责,总编助理田惠明协调图文发稿,湖北分社长章敦华负责采访总调度,文字记者陈建、赵胜玉、陶社兰,摄影记者为邹宪。司机杨福顺、林宪。
星夜驱驰 奔赴荆州
我们星夜驱驰,沿高速公路直达郑州,稍作休息,又走107国道南下,当时京广高速还没有修到武汉。
我们马不停蹄,终于在14号傍晚时分,跨过了长江大桥,与章敦华会师于武昌城下。
15号我们在武汉市区采访,登黄鹤楼头远眺:江水翻滚横流,江面宽阔无涯,水位即将贴近长江大桥了。昔日江上百舸争流,今日没有一艘行船。
武昌沿江大道上,处处是堆的山高的沙袋,用以阻挡肆虐的江水入城。我们登上沿江大堤,穿行街头巷尾,一边察看水情,一边制定下一步的采访路线。
敦华社长的家乡在荆州公安县,他对长江再熟悉不过了。他说:“荆江大堤是长江的生命线,荆州沙市水文站是荆江大堤的晴雨表,荆州公安县是长江的分洪区,万里长江险在荆江。我们应该立刻赶到荆州去。“
事不宜迟,16日清晨, 杨福顺、林宪不顾疲劳,驾车飞速向五百里开外的荆州驶去。我们这两辆采访车此次发挥了巨大的作用,它兼有多种功能。
一是交通功能:哪里出险情,哪里有新闻,我们的采访车就可以每小时百公里以上的速度尽快抵达。
二是办公功能:我们的照相器材、电脑、传真、录音机、传真机、水情资料、地图等办公用品均在车内,大家在行进之中就可以打字发稿、研究题目、拟写采访提纲。
三是餐厅功能:我们的车上装有矿泉水、饼干、方便面、水果、香烟等,渴了、饿了就在车上解决。停车后,两位司机会及时采购补给。
四是卧室功能:采访车也是卧室。累了、困了就在车上打个盹儿。养精蓄锐,上车就睡,体力迅速恢复。下车就干,不知疲倦,一直保持良好的采访状态。两位司机可以停车大堤下,抓空睡会儿。
中午抵达荆州,我们站在荆州抗洪指挥部五楼顶上望去,数十米开外即是荆江大堤,长江第六次洪峰正滚滚而来,堤内是一望无际的浩瀚江水,水位已经超出警戒线两米多,快与楼顶齐平了。
如果荆江大堤一破,江水不但吞没荆州古城,而且一路向东,直逼武汉。可以说保住荆江大堤,就是保住了武汉三镇。
留下还是撤离?
此时,暴雨依然不停,水位一高再高,当地的水利专家告知,要想保住大堤,确保武汉安全,万不得已的情况下,只有在荆州对岸的公安县北闸大堤炸坝分洪,公安县有一个已经规划好的分洪区。
不容耽误,我们要立刻赶到公安县去,荆州与公安县隔江相望,只有几十里的距离,但江面上早已封锁,轮船停驶,摆渡停开,荆州也无大桥横江。
此时要想到对岸的公安县,只有驱车向西100多公里,那里有枝城长江大桥,过桥后再向东折回100多公里,才能到达公安县。两位司机二话不说。继续驾车长途奔驰,终于在傍晚时分到达了公安县城。
由于分洪已经提前预警通知,几十万村民准备“舍小家保大家”,要提前开始撤离。逆行者是解放军战士,他们列队扛锹,喊着口号跑向江边。
湖北媒体同行告知:公安县北闸的大堤上已经挖好了一百多个爆破坑,里面填装了近二十吨炸药。
万事俱备,只等当晚上九点后,中央一声令下,即可炸坝分洪。要炸开分洪的口子长2500米,届时,长江水将一路咆哮倾泻……
如果这样,几十万亩良田将被淹,几十万人口将流离失所,公安县分洪区将是一片汪洋。
怎么办?我们报道组是留下来坚守,还是撤离到安全地带?留下,可以采访到分洪现场鲜活的新闻,记者聚集的公安县抗洪指挥部的三层楼顶还可以抵挡一阵。
离开,关键时刻记者哪能撤离现场!但两辆采访车泡在水里,将彻底报废。
几十万人的家园保住了
怎么办?敦华社长坚定地说:“公安县就是我的家乡,我要留下来”。顾立军说:“九一年安徽淮河水灾我就在现场,我有抗洪的经验,我留下。”
摄影记者邹宪表示,我也要留下来,我用相机记录下炸坝分洪的瞬间。其他几位记者也表示愿意留下采访,让车辆撤离。经过一番讨论,最后决定顾、章、邹三个人留在公安县城,其余的撤到50公里开外的一处叫藕池的高地。
就这样,他们三人冒着生命危险留在了公安县城。其余的人驾驶两辆车急速向高岗之地驶去。

此时已经快晚九点了,公安县城已是漆黑一片,老百姓基本都撤离了,只有军车和军人们在行动。大喇叭还在反复播放着赶快撤离的通知。
我们驾车出了县城,沿着公路狂奔,一路暴雨倾盆,雷电交加,雨刷器用最快的速度来回的刷着,但仍看不清前面的路,车窗外白茫茫一片,大家谁也不说话,司机紧握方向盘,手在发抖,仍然拼力的前行。
我们睁大眼看着窗外,寻找着高点儿的建筑物。大家都表示,一旦分洪的江水追过来,我们就弃车跑到制高点上去,或者爬到大树上。
好在一路有惊无险,一个多小时后,我们终于看到了灯火,看到了高岗之地上避险的受灾民众,这时大家才松了一口气。
8月16日,这是一个不眠之夜,我们不时打探着公安县的消息。
一小时一小时地过去了,深夜两点多,终于,肆虐的江水有所收敛,荆州沙市的水位停在了45.22米,远远高出可以分洪的水位,据说这是150年来长江历史上的最高水位。
这是一招险棋,中央高层临危不乱,科学决策,指挥若定,坚持住了,没有下达炸坝分洪的命令。大坝保住了,公安县保住了,几十万亩良田保住了,几十万人的家园保住了。
伴着洪峰走,枕着长江睡
17日上午,我们的报道组又会师了。从17日起,我们又沿长江两岸的石首、监利、洪湖、赤壁、咸宁、岳阳一路采访,伴着洪峰走,枕着长江睡。
敦华社长得知了洪湖市长的行踪,知道其日夜坚守在长江边的一艘船上。堤在、船在、人在,这艘船就是洪湖市抗洪救灾的指挥部,市长吃住在船上已经几十天了。
敦华社长连夜前去采访,没有灯,打着手电做记录。采访回来后,熬夜写就了专访洪湖市长的稿件。

记者陈建、赵胜玉、陶社兰更是勇者无畏,来到原42军叶军长的石首市抗洪指挥部,并自报家门进行采访,豪爽好客的叶军长被记者勇敢的精神感动了。
这位将军似乎与记者们很投缘,不但接受了我们的采访,还相约第二天,一起乘冲锋舟深入孤岛村庄,去查看被困的灾区。看看救灾的战士们,以鼓舞士气。

要知道,能深入到被淹的村庄去现场采访,没有船是寸步难行的。机会难得,第二天上午,我们身着橙色救生衣,随着叶军长一行,乘上冲锋舟,向着险情最严重的村庄驶去。
我们看到,灾区险段,战士们有的泡在泥泞中挖土,有的扛起沙袋一溜小跑,将沙袋垒在堤坝上。顾立军真是有经验,他钻进受灾民众的帐篷里,摸摸被子,看看锅里,又递给老乡们香烟,与他们深入交谈采访,民众将许多的心里话都讲给了他听。

邹宪的相机不停地拍着,留下了一个又一个难忘的画面。记者的稿件不停地写着,一篇篇传回了总社。值得我们自豪的是,报道组采写的《灾区欢迎三种人》稿件,角度新颖,文笔流畅,后来荣获了第九届中国新闻奖二等奖。
24年过去了,在1998年长江抗洪报道中,我们目睹了世纪大洪水的惊涛骇浪,我们经历了十几天采访的惊心动魄,我们留下了刻骨铭心的回忆,这段经历成为了我们新闻生涯中一段难忘的旧事。
作者:顾立军 田惠明
诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?****** 相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。 你或身边人正在用的某些药物,很有可能就来自他们的贡献。 2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。 一、夏普莱斯:两次获得诺贝尔化学奖 2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。 今年,他第二次获奖的「点击化学」,同样与药物合成有关。 1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。 过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。 虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。 虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。 有机催化是一个复杂的过程,涉及到诸多的步骤。 任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。 不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。 为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。 点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。 点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。 夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。 大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。 大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。 大自然的一些催化过程,人类几乎是不可能完成的。 一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。 夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢? 大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。 在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。 其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。 诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]: 夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。 他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。 「点击化学」的工作,建立在严格的实验标准上: 反应必须是模块化,应用范围广泛 具有非常高的产量 仅生成无害的副产品 反应有很强的立体选择性 反应条件简单(理想情况下,应该对氧气和水不敏感) 原料和试剂易于获得 不使用溶剂或在良性溶剂中进行(最好是水),且容易移除 可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定 反应需高热力学驱动力(>84kJ/mol) 符合原子经济 夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。 他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。 二、梅尔达尔:筛选可用药物 夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。 他就是莫滕·梅尔达尔。 梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。 为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。 他日积月累地不断筛选,意图筛选出可用的药物。 在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。 三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。 2002年,梅尔达尔发表了相关论文。 夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。 三、贝尔托齐西:把点击化学运用在人体内 不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。 虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。 诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。 她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。 这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。 卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。 20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。 然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。 当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。 后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。 由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。 经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。 巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。 虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。 就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。 她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。 大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。 2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。 贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。 在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。 目前该药物正在晚期癌症病人身上进行临床试验。 不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。 「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江) 参考 https://www.nobelprize.org/prizes/chemistry/2001/press-release/ Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116. Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021. https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613. 彩神彩票地图 |